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Quantised fields over de Sitter space 
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Abstract. The theory of quantised fields in de Sitter space is investigated. It is demonstrated 
that de Sitter invariant fields transform like Minkowskian fields under a subgroup of the 
conformal group, if the de Sitter space is parametrised by horospherical coordinates. 
Special attention is thus focused on the resolution of the apparent causality conflict. For 
fields of spin less than or equal to one the field equations are derived; the case of arbitrary 
spin is dealt with by means of Weinberg-type fields. Furthermore, we give an improved 
version of the renormalisability proof for the model of a quantised scalar particle in the 
classical de Sitter background field. 

1. Introduction 

The de Sitter space is a solution of Einstein’s field equation with the cosmological term 
and vanishing energy-momentum tensor (for a review see, e.g. Weinberg 1972, 
Hawking and Ellis 1973, Misner et a1 1973). Its symmetry group contracts into the 
Poincare group in the limit of vanishing curvature (Inonu and Wigner 1954). Further- 
more, due to the fact that the fixed group of an arbitrary point is isomorphic to the 
Lorentz group, one can introduce fields over this space in close analogy to Minkowski 
space. 

In view of these attractive properties, the theory of free fields over de Sitter space 
has already been dealt with repeatedly (Dirac 1935, Gursey 1964, Gutzwiller 1956, 
Nachtmann 1967, Chernikov and Tagirov 1968, Borner and Durr 1969, Grensing 
1970, Tagirov 1973). Our approach to this subject makes use of results obtained 
recently in the context of conformal field theory (Ruhl 1972, 1973a,b, Grensing 1976). 
For the parametrisation of de Sitter space by horospherical coordinates (Hannabuss 
1971), the transformation law of the fields is shown to be idzntical with that of 
Minkowskian fields under a subgroup of the conformal group, which is obtained by 
setting the time component of translations and special conformal transformations equal 
to zero and by restricting the Lorentz group to the rotation subgroup. In contrast to 
conformal invariant fields, the de Sitter fields transform locally under special conformal 
transformations. However, we do not come into conflict with Einstein causality, which 
in essence is a consequence of the fact that the de Sitter space can be endowed with an 
invariant causal structure. 

We derive the field equations for particles with spin less than or equal to one by 
means of a method given in Grensing (1975a); particles of arbitrary spin are discussed 
for fields of Weinberg type (Weinberg 1964a,b). 

It is well known that the de Sitter group admits no positive-definite operator, which 
could serve as a Hamiltonian (Philips and Wigner 1968). As a substitute, the two 
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independent solutions of the field equations can be chosen such that in the limit of 
vanishing curvature the positive and negative frequency parts of the corresponding field 
over Minkowski space are obtained (Nachtmann 1967, Borner and Durr 1969). An 
improved version of this limiting process is developed and applied to the case of 
arbitrary spin. 

By means of these results we are able to treat the quantum theory of a scalar field 
interacting with its classical de Sitter background field. This model has recently been 
shown to be renormalisable (Candelas and Raine 1975, Dowker and Critchley 1976). 
We give a rigorous proof of renormalisability, which furthermore makes no use of the 
Schwinger-De Witt approach. 

2. The de Sitter space and its symmetry group 

This section presents the necessary preliminaries in a rather condensed form. The 
reader who is not interested in these technical details can skip to 0 3, if he is willing to 
accept that a field over de Sitter space transforms according to formula (3.2) of the 
following section. 

The de Sitter space can be realised as the sub-manifold? 

(5")'- (6')'- (6')' - (63)' - (55)' = - 7' 

(g,)a,b=0,1,2,3,5=diag(+1, - 1 ,  -1, -1, -1). 

(2.1) 

(2.2) 

of the pseudo-Euclidean space R(1,4) with elements 5 = (6a)a=0,1,2,3,5 and metric tensor 

Because the hyperboloid of revolution (2.1) is a maximally symmetric space, its 
symmetry group, the de Sitter group SO( 1,4), has the same dimension as the PoincarC 
group E(l, 3). The stationary subgroup of the point 

= (0, 0, 0, 0, - r )  (2.3) 
is the Lorentz group S0(1,3). Hence the de Sitter space is diffeomorphic to the factor 
space S0(1,4) /S0(1,3) .  This is to be compared with the well known result that 
Minkowski space can be identified with the space E(1,3)/SO(1,3). 

Instead of the restricted de Sitter group, we will later need its spin covering group. 
The following realisation, denoted by G, is adapted to our purposes (Cartan 1966). An 
element g of G is supposed to be contained in SL(4,C) and must obey the two 
conditions 

g'Eg=E gtE'g =E ' ,  (2.4) 
where the matrices E and E' are given by 

All sub-matrices in (2.5) are two-by-two matrices, and E is anti-symmetric with 
One can show that G is isomorphic to the group Sp(1,l). 

group on the space 08(1s4). To this end we introduce the matrix 

= 1. 

This realisation has the further property that G can be defined as a transformation 

E = tara (2.6) 
t We only discuss the closed de Sitter cosmos. The open model has the unattractive feature that in 
horospherical coordinates it leads to an uneasy distinction of the third spatial component. 
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0 1 2 3  with ys = y y y y , where y o  is chosen to be 

0 -1  
y o = ( - l  0). (2.7) 

Note that the y-matrices (yLl)r=0,1,2,3, enlarged by y 5 ,  constitute a five-dimensional 
Clifford algebra on account of 

y"yb + ybya  = 2gab. (2.8) 

Then G acts on R(174) according to 

(2.9) -, - - 1  a = g c g  , 

which gives a homomorphism of G onto the restricted de Sitter group SOo( 1,4) with the 
explicit form 

Rub =iTr(y"gybg-') (2.10) 

where R E S00(1,4). 
It is a standard task to parametrise G. A convenient choice is 

1-ps +ifi A 0 coshth +isinhiA) (1+4c* 
g = (  tis l+ii?)(O A)(-isinh$A cosh4A ii? 

= g(a  )g(d)g(c) ,  (2.1 1) 

where A E SU(2), A ER, 6 is the two-by-two matrix 

(2.12) 

and analogously for 2. The decomposition (2.1 1) is not valid globally. However, this can 
be achieved by making use of the element 

(2.13) 

contained in the Weyl group of G. Furthermore, we remark that the stationary 
subgroup 6 of takes the simple form 

(2.14) 

with A E SL(2, e). 
Now we have developed the necessary tools to parametrise the de Sitter hyper- 

boloid. To give a motivation, we note that the product of the first and third factor in 
(2.11) times a power of the element (2.13) of the Weyl group maps the fixed point into 

(2.15) 

with o = 0, 1. Thus, we can reach all 5 with t2 = - r2  which obey the restriction 

5°+55 = ~r e-* z 0. (2.16) 
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We introduce the notation 
k k  z o  = *eA, z = a  (2.17) 

and obtain 

- (1 - z2)/2z0 
(2.18) 

for zo  # 0, where z = 
( Z ~ ) ~ - ( Z ~ ) ~ - ( Z * ) ~ - ( Z ~ ) ~ .  The inversion of (2.18) simply reads 

is a Minkowskian vector with scalar product z 2  = 

(2.19) 

for [o+6s # 0. In these coordinates the fixed point corresponding to [ is f = (1 ,0,0,0) .  
If we define 

g z  = g(u)g(d)(gaJ" (2.20) 

g,. 2 = z .  (2.21) 

with U and A according to (2.17) and w = (1 -sgn z0)/2 we may write 
0 

This parametrisation of de Sitter space M will be used exclusively in the following. Note 
that due to to+ 5' f 0 there are only two charts which do not overlap and thus constitute 
no atlas. It is called a horospherical coordinate system because the coordinate 
hyperplanes zo = constant are imaginary horospheres of the first kind (Gel'fand er a1 
1966). To show this, choose the vector 

t o  s* =-(- 1,0,0,0, + 1) 
r 

of R(1*4) with the property j 2  = 0. By virtue of (2.18) 5 then obeys the relation 

S.i= 1, 

which is the defining equation for a horosphere of the first kind. Furthermore, that part 
of the hyperboloid not covered by the parameters z makes up a horosphere of the 
second kind. A basic property of these horospherical coordinates is that the intrinsic 
geometry of the coordinate hyperplanes to  = constant is Euclidean (cf (4.17)). As is 
concerning the spatial part of t, we thus have a close analogy to Minkowski space. 

We conclude this section with a short discussion of the irreducible unitary represen- 
tations U* of the quantum mechanical de Sitter group. They are labelled by an index 

x = ?; A), (2.22) 

where 1 = 0, 1, 1, I, . . . is an angular momentum variable and A is a complex number. For 
the principal series of representations A takes the values 

A = -$+ip (2.23) 

with p E W. It is this series in which we will mainly be interested; the explicit form of 
these representations is derived in appendix 1. The complete set of inequivalent 
representations is given in the following list (Hirai 1962, Kuriyan et a1 1968, Bohm 
1973): 
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Discrete principal series: 1 - 2 2 A 2 - 4  A integer or half-integer 
together with 1 

Supplementary series: O > A >  -5 1 = 0 a n d A # - l  

Exceptional series: A = - 1  1 integer. 

Actually, the discrete series splits into the analytical and the anti-analytical series. 
Furthermore, we shall need the eigenvalues of the two Casimir operators of G, 

(2.24) Continuous principal series: A =  -$+ip p a 0  

- 1 > A > - $  1 # 0 integer 

(2.25) 

(2.26) 

where by Mab we have denoted the infinitesimal operators of SOo(l, 4) with commuta- 
tion relations 

(2.27) 

and is totally anti-symmetric with E~~~~~ = 1 .  The calculation yields (cf appendix 

UX(C1r)= 1(1+ 1)+ A ( A + 3 )  Vx(C~v)=1(1+1)(A+2)(A+1). (2.28) 

Note that the substitution A +  - 3 - A  does not alter the eigenvalues; the representa- 
tions with label (I; A) and (1; -3 -A)  can be shown to be equivalent. 

[Maby Mcd 1 = - i(gacMbd + gbdMac - gadMbc - &Mad 

1): 

3. The transformation law of fields over de Sitter space 

We have pointed out that the stationary subgroup & of 2" is isomorphic to the Lorentz 
group. Thus we can define fields over de Sitter space and their transformation behaviour 
in analogy to the flat case by following a well known procedure. 

To this end, we choose a finite-dimensional representation D of SL(2, C )  over a 
vector space V and define the representation acting on fields, i.e. differentiable maps 
$: M +  V, by 

There is a profound geometrical concept motivating the introduction of these field 
representations, which justifies their physical relevance (Varadarajan 1970). 

The boost gz, which enters into (3. l), has been given in (2.20) so that the action of the 
individual subgroups (2.11) of G may be calculated. Because the factorisation of G is 
not adapted to the de Sitter space, the little group element g(z, g)= g;'gg,-i., must be 
determined directly; the result is 

T(g)*(z)=D(gl'gg,-I.,)*(g--' * 2). (3.1) 

T ( c ) J I ( z ) = D ( A ( z , c ) ) ~ ( z  - ~ ~ ~ / 1 - 2 2  . c+z 'c ' )  

with 

(3.3) 
A ( z , c ) = ~ + z ~ ~ + + ~ / ( ~ - ~ z . c + z  2 c 2 ) 1/2 , 
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and where we have extended U and c to a four-vector, e.g. c = (0, c I ,  c 2 ,  c3) .  This 
transformation law, however, is known from conformal field theory. It coincides 
precisely with the transformation law of a Minkowskian field with respect to a subgroup 
of the conformal group (see Grensing 1976, formula (5.1)), which contains pure spatial 
translations and special conformal transformations, dilatations and rotations. Further- 
more, the dimension of the field must be put equal to zero?. 

Thus the fields over de Sitter space transform under a subgroup of the conformal 
group, if the parametrisation by horospherical coordinates is chosen. In particular, a de 
Sitter field is dilatation invariant and carries dimension zero for arbitrary spin and, as 
will be shown later, arbitrary mass. 

4. The causality problem 

Due to the property that the transformation behaviour of a de Sitter invariant field is 
intimately related to the conformal group, one expects problems with causality. 

As to the conformal group, it is known that the causality conflict is avoided for free 
fields by a non-local transformation law with respect to special conformal transforma- 
tions (Swieca and Volkel 1973). This has recently been shown to be equally valid for 
interacting fields (Mack 1975, Grensing 1976). 

For the de Sitter group the situation is different, because a de Sitter field transforms 
locally even under special conformal transformations. We shall prove in the following 
that a global causal ordering can be defined on de Sitter space, which is invariant under 
de Sitter transformations. This entails, as will be shown in 0 8, that no difficulties occur 
in connection with Einstein causality. 

To begin with, we construct a basis of vector fields on M. At first we choose a 
canonical basis V , ( f )  for the tangent space over 2, 

i a  
r a i w  V,(2 )=- - .  (4.1) 

This basis is mapped into a basis of the tangent space over an arbitrary point z with the 
aid of the boost g,  by defining 

V, (2) = A * ( g z  > V p  (219 (4.2) 

where A,(g) is the derived linear function (Brickell and Clark 1970) of the left 
translation A (g)z = g . z .  The explicit form of the vector field (4.2) is found to be 

A simple computation shows that 6 maps the basis over 1 into 

A*(8)VW(2)  = AV,V”( f ) ,  (4.4) 

where A = G(8)  with 7i the well known homomorphism of SL(2, C) onto the Lorentz 

t On comparing formula (3.2) of this paper with formula (5.1) of Grensing (1976), we omit the c prescription 
in the latter. We are free to do this, if we do not require the field to be the boundary value of an analytic or, 
anti-analytic function in the forward or backward tube, respectively. Then we obtain a local transformation 
law even for special conformal transformations. 
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group. Thus an element of G transforms the vector fields into 

A * ( g ) V , ( z ) = N g .  z , g ) ” , V u ( g .  2) (4.5) 

with +(&, g ) ) =  A(z, g )  and B(z, g ) =  g ; l g g g - l , z .  If the V , ( t )  are normalised accord- 
ing to ( V , ( f ) ,  Vu(,?))  = g,,, then the normalisation of the vector fields is 

(V,(Z),  V ” ( Z ) )  = g,u (4.6) 

due to (4.5). This implies that the metric tensor 

of de Sitter space reads 

g,& 1 = ( r / z  o)2gPu, (4.7) 

which can be shown to be identical with the metric tensor the de Sitter space inherits as a 
sub-manifold of 88(1*41, 

The assertion that the de Sitter space is causally orientable in an invariant manner is 
an immediate consequence now. We decompose an arbitrary vector field Z ( z )  over M 
with respect to the basis, 

Z ( z )  = U’(Z)V,(Z).  (4.8) 

” 7  = A * ( g ) Z ( z )  (4.9) 

Then the transformed vector field 

with t ’ = g . z has components 

u f * ( z f )  = A(z’, g) ’yuy(z) .  (4.10) 

Hence we can divide the tangent space over an arbitrary point z of M into time-like, 
light-like, and space-like vectors and define a time orientation in the usual way, which is 
an invariant characterisation in view of (4.10). 

We note that the invariance property of sgn up(z)u , (z )  and of sgn uo(z )  for 
u p  (z>u, (z) 2 0 can easily be proved directly. The proof is non-trivial only for special 
conformal transformations, where use has to be made of 

with 2’ = g- ’ (c )  . z and 
z*z,  

g p y ( z )  = gpu - 2- 
z 2  * 

(4.1 1) 

(4.12) 

Furthermore, one must take into account that 

sgn(1-22. c +z2c2)g (z )g (z f )  = A(z, g ( c ) )  (4.13) 

is an element of the restricted Lorentz group. 
For later purposes we determine those points z2  which are causally related to an 

arbitrary but fixed point zl. Thus, given a curve z ( t )  from z(O)= z1 to z ( l ) =  22 the 
vector 

v ’ (z( t ) )  = s g n ( z O ( t ) ) T  i p ( t )  (4.14) 
r 
0)  
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must obey the conditions v ” ( z ( t ) ) u p ( z ( t ) ) 2 O  and vo(z(t))>O. Note that the horo- 
spherical coordinates are defined for zo  # 0 only. Hence we restrict the investigation to 
zy, z:>O at first. If we take as curve z ( t )  the straight line 

z(f)=z1+f(Z2-Z1), (4.15) 

the conditions are met for ( z 2  - z1)2 3 0 and z :  - z y > 0. To treat the general case; we 
compute the distance squared from z1 to 2 2 ,  

1 

(s2>12 = lo up(z(t))v,(z(t)) dt, 

for the curve (4.15) with the result 

(4.16) 

(4.17) 

Now the condition (s2)12 2 0 is easily recognised as the generalisation of the condition 
( 2 2 - 2 1 ) ~ 3 0  to arbitrary zy,&#O on account of the identity ( s2h2= 
Furthermore, from the inequality 

1s; -&I 3 1s: -&:I 
for (e2 
the invariance of sgn(eg - (7) for (e2 - 

3 0 we infer that the sign of (r/zy) - (r/zg) is invariant for ( s ’ ) ~ ~  3 0 due to 
3 0. 

To collect the results, we have shown that z 2  is causally related to z1 if 

and 

(4.18) 

(4.19) 

and this relation is invariant under de Sitter transformations. 
In concluding this section, we give some further geometrical properties of de Sitter 

space. By means of the metric tensor (4.7) we can calculate the Riemann tensor with the 
result 

1 
r 2  cIp 

Rlrvpr = --(g (z)g,(z)-gg,,(z)g,p(z)).  (4.20) 

Then the well known definition of the curvature K yields K = - l / r2 .  Thus, the de 
Sitter space is a pseudo-Riemannian space of constant negative curvature. Further- 
more, the Laplace-Beltrami operator is easily obtained to be 

(4.21) 

Finally, we determine the invariant measure over M. To this end, note that the dual 
basis of differential forms 

w p ( z )  = sgn(zo)(r/zo) dz* (4.22) 
transforms according to 

A*(g)ww(z) = A b ,  g)&,w’(g-’ . 2). (4.23) 
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Thus, the measure 
d ~ ( ~ ) = ~ ~ ( z ) x w ~ ( z ) ~ ~ ~ ( z ) ~ ~ ~ ( z ) =  ( r / z  0 4  ) d 4 z 

over M is invariant under de Sitter transformations. 
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(4.24) 

5. Contraction 

Intuitively it is obvious that the de Sitter hyperboloid goes over into Minkowski space 
for r + 00. Furthermore, one then expects the de Sitter group to contract into the 
PoincarC group in this limit. The contraction process is a delicate limiting procedure 
and has been dealt with extensively in the literature. In the present case we give a 
thorough treatment, which heavily relies on the parametrisation by horospherical 
coordinates. 

At first we define the contraction process for de Sitter space. Consider a point ( with 
5’ = - r 2  in the vicinity of i. We associate with 5 the point x in the tangent plane at g 
with the coordinates x’I = 6’. In the limit r +CO, the point 5 of de Sitter space coincides 
with the corresponding point x in the tangent plane, 

Thus, by virtue of (2.19) it is tempting to define variables x by 

Z k  = - - x k / ( x 0 - r ) ,  (5.2) 
0 z o  = - r / ( x  - r ) ,  

and we expect these coordinates to be adapted to the limiting process r + CO. Indeed, it 
is easily shown by means of (5.2) that the basis of vector fields tends to the canonical 
basis of Minkowski space, 

a 
r-m ax* 
lim V,(z) = -, 

and the line element into the Minkowskian value 

lim g,,(z)  dzp dz’ =g,, dxp dx”. 
r-m 

(5.3) 

(5.4) 

Furthermore, the limit of the Laplace-Beltrami operator is the Klein-Gordon 
operator, 

a a  
r + m  ax* ax, 
lim O(z) = - -. ( 5 . 5 )  

We now turn to the contraction process for the de Sitter group. It is evident that 
rotations with parameters aPy will correspond to Lorentz transformations A in the 
tangent plane, and that rotations with parameters c y f i 5  will go over into translations a”, 
if c y p 5  + 0 for r + 00 such that the limit 

lim rafi5 = a” 
r-m 

(5.6) 

is finite. To investigate this in detail, we need the parametrisation of G in terms of the 
parameters aab = -aba, which may be shown to read g = g’g with 6 according to (2.14) 
and 

(5.7) 
, coshth +isinhtA) . l ( i f + A ’  - A - A t  
=(-isinh;A coshiA 2 A - A f  A + A t  
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where A E R and A E SU(2). We define A = (Y O5 and a! = a! k 5  with a the parameters of 
A,  so that g' acts on 8 as usual. Then, by taking into account that 

(5 .8 )  k r k  

r-m z x = l i m ~ z  , x o =  lim r ( zo -  I), 
r-bm 

a simple calculation yields 

(5.9) r k l i m T z ' k  =AkuxU+u 
r-bco z lim r(z'O- 1)= AoYxU +ao, 

r+m 

for z' = g . z ,  which is the well known action of the PoincarC group. It is now obvious 
from (5.6) and (5.9), and will be shown explicitly in the next section, that the limit of Miry 
and -Mlr5/r for r + c o  is finite and yields the infinitesimal operators of the PoincarC 
group. We thus define 

1 
r 

(5.10) p = - - M  

and obtain the commutation relations 

l r5  LL 

(5.11) 
i 

r [P,, P u 1 =  TMpu + 0. 

Furthermore, we discuss the contraction process for the field representations. As 
we shall prove in 0 8 the limit 

lim r- '$(z)  = 4(x )  
r-00 

for the de Sitter field exists at least on a certain sub-space of functions. If we assume this 
to be true in general, then it easily follows by means of (5.9) and limr-bco g,  = e that 

lim r-'T(g)$(z) = D ( A ) ~ ( A - ' ( x  - a ) ) ,  (5.12) 
r+m 

which is the usual transformation law of a relativistic field in flat space. 
The contraction process for the representations of the continuous principal series 

has been investigated in the literature (Mickelsson and Niederle 1972, Bohm 1973). 
We only make some qualitative remarks on this point. As is evident from the foregoing 
discussion, the Casimir operators multiplied by l / r z  have a finite limit for r + 0;). They 
contract into 

1 1 
lim 7 CII = - PpPLL lim C,, = W, Wp,  
1-00 r r-am r (5.13) 

with Wlr = ~ E " ~ ~ ~ M ~ ~ ~ ,  which are the Casimir operators of the PoincarC group. 
Correspondingly, the eigenvalues (2.28) of the Casimir operators have a finite limit, if 
p +CO for r + 0;) such that 

lim p / r  = m (5.14) 
r-bm 

is finite. Then we obtain 
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which are the eigenvalues of the Casimir operators of the PoincarC group for real mass 
representations. Note, however, that the contracted representation ,y = ( I ;  -$+ip) is 
no longer irreducible. It can be shown to be the direct sum of the representations with 
positive and negative energy. 

6. Field equations 

The field representations over de Sitter space are neither irreducible nor unitary; they 
are reducible even if the inducing representation is irreducible. In the Minkowskian 
case the field equations are known to enforce irreducibility and unitarity (Niederer and 
O'Raifertaigh 1974, Grensing 1975a). A genuine and constructive approach to derive 
the field equations over flat space has been given in Grensing (1975a), which can be 
applied analogously to de Sitter space (Grensing 1970). In part this method has also 
been used in Borner and Diirr (1969). 

The infinitesimal operators of the field representation can be computed from (3.2) to 
yield 

T(Po) = iz, a,/r 

where the 
they indeed contract into the PoincarC operators 

denote the infinitesimal operators of D. A simple calculation shows that 

a a 
( ax' ax, 9 

r - rm lim T(M,,) = X,,, + i x,-- xu-) (6.2) 
a 

r-m ax lim T(P,) = i- 

a result which has been anticipated in 0 5 for the scalar case. 
The Lie algebra operators (6.1) act as differential o#erators. Hence the Casimir 

operators supply us with differential equations, if we require T(CII) and T(CIV) to be a 
multiple of the unit operator with eigenvalues (2.28). These conditions restrict the 
function space to an invariant sub-space. 

Thus, in the case of the Casimir operator of second order, the field is subjected to the 
condition 

(r2U(z) +txikXik -2iXOkz0ak)$(z) = [ I ( I  + 1) +A(A+3)]$(z), (6.3) 

which replaces the usual Klein-Gordon equation. Note that (6.3) depends on the 
inducing representation in contrast to the flat case. 

For the Casimir operator of fourth order we must specify the representation D of 
the Lorentz group. Furthermore, the discrete transformations must be taken into 
account. They have been dealt with in detail in appendix 2. We will investigate only 
three cases, for which the inducing representation D and the representation of the 
discrete transformations have the following form: 

s =o: D ( g )  = 1 

T(gp)l(l(z) = E*p$(AP'z), T ( g T ) $ ( Z )  = E*-&(&'z) (4 .4)  
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D(6)  = 6 1 s =z:  

T(gp)$(Z)= sgn(zO)y”$(AG’z), T(gT)$(Z)= i&y0Y5$(&’Z) (6.5) 

s = l :  D(g)  = A 

T(gp)$(Z) = Z ~ A ~ $ ( A P ~ Z ) ,  T(g-r)$(Z) = ~TAT$(A?~Z) .  (6.6) 
In (6.4)-(6.6) we have denoted by P and T the space and time inversion. Their 
representations contract into the most frequently used in flat space. Furthermore, the 
total inversion is given as usual by gpT = gpgT and Elp, gT take values f 1. Note that for 
s = 4 the discrete transformations commute, though the contracted transformations 
anti-commute. 

Now we are ready to determine the conditions imposed by the invariant operator of 
fourth order (see equation (A.10)). 

s =o: T(C1V) = 0. 

On comparing with (2.28) we obtain 1 = 0. 

s =-j: 

Analogously, this condition requires 1 = t .  
s = l :  

In order to make T(CIV) a multiple of the identity operator, we set the second term on 
the right-hand side equal to zero. This is achieved by (Grensing 1970, Borner 1871) 

T(CIV) = $qC,,) +%. 1 

( T ( ~ I v ) $ ) ”  ( 2 )  = 2(T(C11)$r)’(z) + 2z0a”[3$~(z)-z ‘ap$’ (213. 

3$o(z)-zoa’$’(2) = 0, (6.7) 

which is the Lorentz condition in de Sitter space. Furthermore we obtain 1 = 1. 
With that we have concluded the investigation of the restrictions implied by the 

Casimir operators. However, for s=  1 the field representation is still reducible. Con- 
sequently we try to find a further invariant operator, which for reasons of simplicity we 
take to be a differential operator of first order, 

D ( z )  = C”(z)d, + C ( z ) .  (6.8) 

[TW,), D(z)l= 0 = [T(MwV), D(z)I (6.9) 

C”(2)  = ZOC’, C(Z) = c, (6.10) 

Then the invariance conditions 

determine the functional dependence on z ,  

and the constant four-by-four matrices C’ and C must obey 

[ E f i v ,  Cl = -i(gW7Cu - gyTCp) (6.11) 

[ E i k ,  Cl = 0, [&, C] = C’2,. (6.12) 

Equation (6.11) can obviously be satisfied with C’ = y’, and from (6.12) we obtain 

D ( 2 )  = z o y a C L  -;yo. (6.13) 

c=-2 2y 0 . Thus the invariant operator is determined to be 

The eigenvalue of D ( z )  is found by observing that 

D2(2)  -- T(CII) +; = - p z ,  
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hence we require D ( z )  = f ip. We take the plus sign due to our unconventional choice 
of y o  and obtain 

(zoypap -$y0)$(z )  = ip$(z), (6.14) 

which is the Dirac equation in de Sitter space (Nachtmann 1967). 
It now remains to examine the compatability with the discrete transformations. As 

is easily checked, the parity operator commutes with D (2). However, this does not hold 
for the time inversion. Hence the time inversion is no symmetry of the theory-at least 
for our choice (6.5) of discrete transformations. Therefore we omit the time inversion 
in the following investigations, though the field equations for s = 0 and s = 1 are 
invariant under all discrete transformations. 

We finally remark that the field equations contract into the corresponding field 
equations of Minkowski space. For the Klein-Gordon equation (6.3) this is obvious 
from the results of Q 5 ,  and for the Lorentz condition (6.7) and the Diracequation (6.14) 
the assertion follows upon multiplication with l / r .  It is thus tempting to interpret them 
as field equations for particles with spin s = 0, $, 1 and mass m = p / r .  Further support 
for this interpretation will be given in the following. 

7. Generalised covariant derivative 

In 5 4  we have introduced the basis (4.3) of vector fields over de Sitter space. By 
definition, they act on scalar functions $ over M. These vector fields have the basic 
transformation property ( 4 3 ,  which we rewrite by using the notation A * ‘ ( g )  = T,(g) as 
follows, 

T*(g)VP (z)$(z) = V p ( z ) T ( g ) w )  = N z ,  d p ” V ” ( g - ’  ’ z ) $ ( g - ’ .  2) (7.1) 

with V p ( z )  = g ” ” V , ( z )  and T(g)  the scalar field representation. Thus, T,(g) is a field 
representation that is obtained by commuting V(z) = ( V ” ( Z ) ) , = O , ~ , ~ , ~  with T(g) ,  

T,(g)V(z) = V(z)T(g) ,  (7.2) 

and is induced by the self-representation of the Lorentz group. 

representations T(g) .  The explicit form of (7.2) will then read 
We want to generalise V(z)  such that (7.2) remains valid for arbitrary field 

vp(Z)DAB(g(Z, g ) )$B(&-’  . Z ) = A p u ( Z ,  g)DAB(g(Z, g > ) v ’ ( g - ’  * Z ) q B ( g - ’  * 2) (7.3) 

with A, B = 1,. . . , N and N the dimension of D. Hence the ‘derived induced 
representation’ T,(g) is induced by the representation AOD(6) and acts on V(z)$(z )  
according to (3.1). 

The generalisation of the vector fields V,(z) is obtained by adding to (4.3) a 
r-dependent N x  N matrix, 

a 
V , ( Z )  = e v p ( z ) ( z + r ” ( z ) ) ,  (7.4) 

where we have introduced the inverse uierbein 

Z 0  
e u p ( z )  =-gyp.  r (7.5) 
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Due to (7.3), the T,(z) must obey 

(7.6) 
a az 

w z ,  g) ) - l ( , ,+rv ( z ) )o (az ,  g) )  =aLyr,,(zo 
with z’ = g-’ , z .  For the individual sub-groups of the factorisation (2.11) the condition 
(7.6) splits into 

z 1  = z -z2c/1 - 22. c +z2c2, 

where we have used (4.1 1). Equation (7.7) requires T,(z) to be a function of z o  only, 
and (7.9) shows that 

r,,(Z) = r,,/zo (7.11) 

with the I‘,, being constant N x  N matrices. To exploit (7.10), we restrict to I C /  << 1 and 
get 

i 1 
c v z v , ,  + 2 ( c y z , ,  --zyc,)r, =ac~z~[z,, r,] 

2 

by means of (4.13). Combined with (7.8), this condition yields 

zi0 + iTi = [Eio, ro] 
x i k  = [xi09 r k  1 

so that 

T,, = iZPo. 

Hence we obtaint 

1 
r V,(z) =-(zOa,, -iZo,,) 

(7.12) 

(7.13) 

as the final result. 
By means of (7.13) we can now define the tensor-spinor 

(2) = V”l(2) . . . V”, ( z )$A(Z) ,  (7.14) 

yhich thus transforms under the field representation induced by the representation 
OAOD(A) .  This is the basic property of the generalised covariant derivative. 

t This form of a generalised covariant derivative has been given already by Nachtmann (1967). Note, 
however, that his method is not capable of yielding the second term on the right-hand side of (7.13). This is a 
consequence of the fact that Nachtmann’s definition (2.18) coincides with our definition (4.2), as follows from 

$ , , I . .  , rp 

a a 
v,(r)rL(z)=az”T(g,)-’rL(z’)l*,=f = - W ( z ‘ ,  az’” gz))rL(gz. z ’ L t  

and p(z‘ ,  g,) = e .  
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In connection with these results we make some further comments on the field 

(7.15) 

so that for the field representations in question the operator (7.15) is a multiple of the 
identity simultaneously with T(Crl). The Dirac equation (6.14) takes the suggestive 
form 

(iycIV,(z)+ m ) $ ( z )  = 0 (7.16) 

with m = p / r ,  which may be used to yield an independent proof of its invariance. 
Furthermore, the Lorentz condition (6.7) now reads 

(7.17) 

Its role is further clarified by noting that Gauss’ theorem with respect to the differential 
forms 

Z’(z)= - ~ . ” ” T O Y ( Z ) X W p ( Z ) X O r ( Z )  (7.18) 

equations. The operator of second order g”’V,(z)V,(r) is calculated to be 

r *v@ (z  )v, ( z )  = T ( C ~ , )  - $Z,,Z~”, 

@, (2 )$IN (2 ) = 0. 

and for an arbitrary vector field 4” is 
c r 

(7.19) 

The usual form of this integral theorem is obtained, if we pass from 4, to 

Ap(z )  =e* , ( z )$” ( z )  (7.20) 

and take into account that 

(7.21) 

where r’’,(z) is the Christoffel symbol. It is readily shown that A, is a vector in the 
sense of Riemannian geometry. This property together with (7.21) makes explicit the 
relation between the generalised and the ordinary covariant derivative. 

1 
-V,(Z)$’(Z) = &A’(z) +P,(z)A‘(z), r 

8. Solutions of the field equations and Einstein causality 

Having derived the field equations in the preceding sections, we now give a systematic 
treatment of their solutions. 

At first we study the case of arbitrary spin s t  for fie‘lds of type (s, O)O(O, s) d la 
Weinberg. The only field equation is 

(8.1) 
where the Z,, are the infinitesimal operators of the representation D(A)=  D‘”(A) 
OD(s)(A)t-l acting on $ =xOX. Furthermore, D‘”(A) and D‘”(A)t-l are the well 
known representations (s, 0) and (0, s) of the Lorentz group (for the explicit definition, 

( r 2  (2 ) - 2ixOkz ‘dk 19 (2 ) = A(A + 3)9(z ) ,  

t In Mielke (1977), the generalisation to arbitrary spin has been tried by means of Bargmann-Wigner 
equations. However, the equations given there are not even invariant. Furthermore, it is erroneously 
believed that the operator &Jik acts on the Bargmann-Wigner field as a multiple of the identity with 
eigenvalue s(s + l), which is known to be true for s only. 
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see, e.g. Grensing 1976, formula (B.22)). The differential equation (8.1) decouples into 
separate equations for the (2s + 1)-component fields x and x,  which have two indepen- 
dent solutions denoted by X* and x * .  We call them positive and negative frequency 
solutions for reasons which will become clear shortly. On performing a Fourier 
transformation with respect to the spatial part of z, e.g. 

we obtain 

d2 d 
2 ; ~ -  2z0-+ (pz0)* 3 20(S)(MOk)~0pk - A(A + 3))x*(z0 ,  p )  = 0. ( dzo dzo 

This set of coupled differential equations can be reduced by choosing a helicity basis, 
S 

x-(zO, PI = i m0, p ;  S 3 1 X ( P ,  $31, 
S 3 = - S  

x + ( z O , p ) =  U * ( Z 0 ,  p ;  s3)x(p, s3), 
s3=-s  

(8 .3)  
where U +  and c-  are scalar functions and x(p, s3) is defined by 

and p = IpI. The rotation (8.5) maps (0, 0, p )  intop = @', p 2 ,  p 3 ) ,  which is used to show 
that the basis functions x(p, sj) have the property 

where M" = M 3  etc. Then, by taking into account that 
+D(s,O)(MkO) = ~ ( s ) ( ~ k )  = -i~(O,s)(j@o), 

we end up with a differential equation for U +  and c- ,  e.g. 

d2 d 
dw dw 

(, w 2 ~ -  2 w-+ w 2  + 2is3 w - A(A + 3))u+(zo, p ;  s3) = 0 

with w = pzo.  The solutions are 

(8.7) 

where - 2iw) is a Whittaker function (Magnus el ul 19661, U+@,  s3) and c-@, s3) 
are arbitrary Fourier amplitudes, and N ( p ,  p )  is a normalisation factor. The corre- 
sponding functions x *  are obtained by simply replacing the index s3 of the Whittaker 
functions by its negative due to (8.7). The solutions of (8.1) are built from the solutionsx 
and x and read 
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with the fundamental solutions being given by 

The factor (- 1)” in front of the lower components of Ijl-(zo,p; s3) has been chosen in 
analogy to the flat case (Weinberg 1964a,b). 

Now we are left with the determination of the normalisation factor N ( p ,  p ) ,  which is 
done as follows. The Hermitian form 

( + I ,  1jl2) = ir-2 xp  (z)[(i;:(z )vp (r)Ijl&) - (- l)zs(i;&)~p (214 2 2  11, (8.11) 
z o= constant 

where by definition 

and &= kt, x’), is invariant under de Sitter transformations (3.1) due to (4.23) and 
(7.3). Furthermore, it is independent of t o  on account of the‘identity 

v p  (2 , ( i ; <z )8 ,  ( Z ) I j l 3 Z  )) = 0 

and Gauss’ theorem (7.19). Note that a factor r -2  has been inserted in (8.11) to give the 
right-hand side the dimension zero. We fix N ( p ,  p )  by requiring that (8.11) takes the 
form 

(8.13) 

an arbitrary phase factor?. In addition we have proved that (8.11) is an inner 

As is obvious from (8.13), these investigations are valid for p > 0 only. We will make 

We next turn to the investigation of the contraction process. We expect the limit 

with ,tecp.p, 

product, with respect to which the field representation (3.1) is unitary. 

some remarks on the existence of mass zero particles in de Sitter space in 0 10. 

(8.14) 

with x and z being related by (5.2), to be finite because the scalar product (8.11) then 
contracts into the well known scalar product 

t Borner and Durr (1969) have normalised the solutions with respect to the invariant measure (4.24). 
However, then the scalar product does not contract into the corresponding scalar product of Minkowski 
space. 
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in Minkowski space. Furthermore, we define, e.g. 

(8.15) 

with p = rk and w ( p ) =  J ( p 2 + p 2 )  so that (8.12) goes over into the usual Minkowskian 
expression 

w(k)=J(m2+k2) .  

Note that the field 4 carries the correct canonical dimension 6 = s + 1 due to (8.14) and 
(8.15). In order to compute the limit (8.14), we use the following asymptotic expansion 
of the Whittaker functions k f k , m ( Z )  for large Iml and /zI (see Kazarinoff 1955, as cited 
in Magnus et al 1966, p 319), 

Mk,m(2mz)-2 1 1" 2m+1/2mm+1/22  - m + l / 2 ~ ( ~  2 + 1 ) 1 / 2  - 

x[(z2+ 1 ) 1 / 2 - ~ ] k ( ~ 2 + 1 ) - 1 / 4 e x p ( m [ ( ~ 2 + 1 ) " 2 -  11) (8.16) 

lz/2mI< 1. (8.17) 

The inequality (8.17) applies to our case since we have to investigate MS3,@( - 2irlklz') 
for p and r large?. Then some calculation shows that for 

[ p / ( w  ( p )  - p)]" (8.18) e i N ~ , p )  - - 2-2ip e - i 3 ~ / 4  e-ip(lnp- 1) 

the limit (8.14) exists and is equal to 

k = ( U & ) ,  k), (8.19) 
where the functions 4 * ( k ,  s3) are exactly the fundamental solutions in the helicity basis, 
e.g. 

) *  4'(k7 " ) = 3  i [ ( w ( k ) +  Ikl)/m]-S3~(k, s3) 
1 [ (U&)+  lkl ) lml+"X(~~ s3) 

To obtain this result was the reason for choosing the Whittaker functionsMk,m(z) of the 
first kind. If we had chosen instead the functions Wk,m(~)  of the second kind, the limit 
of, e.g. $+(z), would contain positive and negative frequency parts. 

To sum up, we have shown that particles of arbitrary spin s and mass m = p / r  # 0 
exist in de Sitter space and their fields contract into those of Minkowski space. With the 
exception of the Klein-Gordon equation (8.1), we had no recourse to field equations. 
We now return to the investigation of fields of spin s s 1, defined by means of the field 
equations derived in 0 6. Furthermore, we make the transition to quantum fields. Then 
the Fourier amplitudes ai@, s3) and c-@, s3) become operators with adjoints 

C+b, s3) = a + @ ,  s3)+ a-(p,s3)=C-@,S3)+. 

As usual U * @ ,  s3) and c*(p ,  33) are interpreted as annihilation and creation operators of 

't In Mielke (1977) the asymptotic expansion of the Whittaker functions wt.,(2imz) (see Kazarinoff 1955, 
equation (9.3)) is used, though this formula is applicable only for lz/2m I > 1 .  
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particle and anti-particle states, respectivelyt. They are assumed to obey the commuta- 
tion or anti-commutation relations 

[a*(p,  s3), C*(P’, 3 9 3  

= a*(p, s3)cf(p’, s;)-(-1)2sc*(P’t sS)a’(p, s3) (8.20) 

= (27d3sS,,:s(P - p ’ )  
in agreement with the connection between spin and statistics. This definition is 
compatible with the behaviour under scale transformations, e.g. 

(8.21) 

The creation and annihilation operators thus have dimension - 3/2 for arbitrary spin. 
Note that to obtain (8.21) we must set the phase factor (8.18) equal to one. 

s = o  
The solutions (8.9)-(8.10) can be employed for the scalar case if we identify 

A 3/2 f ?“@-‘a*@, s3)T(d)  = (e ) a (eAp, s3). 

and if the factor \1(2)ms in (8.14t(8.15) is replaced by one. The commutator function, 
defined by 

(8.22) [W), W)+I = iAk, 277 

obviously is a solution of the homogeneous Klein-Gordon equation and obeys 

V”(Z)A(Z, z ’ ) ( ~ o , ~ ~ o =  - ( z O ) ~ S ~ ( Z  - 2 ’ )  + -s3(x -XI). (8.23) 

The limit in (8.23) is obtained upon multiplication with r-’ because the contraction has 
to be carried out with respect to 

+ ( x )  = lim r - l g ( z )  (8.24) 
r-m 

according to the above remark. Furthermore, the distribution A@, 2 ’ )  has the property 

A(z, z ’ ) I ~ o = ~ , o = O  (8.25) 

so that the scalar field is local. 

1 
S = z  

The calculation shows that the solutions (8.9)-(8.10) are solutions of the Dirac equation 
as well. This is equally valid in the flat case. Note that this property fails to be true if we 
had used the Whittaker functions of the second kind instead. The determination of the 
equal-time anti-commutator yields 

(8.26) 

by taking into account the identity 

x(-P, s3) = (-l)s+”3((P1 - i P 2 ) / 4 2 P ( P  +P3)1 )2s3X(P ,  -s3). 

Hence the Dirac field obeys the principle of Einstein causality. 

t Actually, this is a subtle point because the field representation splits into the direct sum of two equivalent 
representations in contrast to the flat case. 
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s = l  

This case is not covered by the above investigations on Weinberg-type fields. The 
solutions of the Klein-Gordon equation (6.3), or explicitly 

r 2 0  (z)rLo(z) -t 2z0ai44(z) = [2 + A(A + 3)]rLo(2) 

r 2 0  ( , ? ) l ( / k ( Z ) - 2 Z 0 d k $ o ( z )  = A(A + 3)Gk ( Z ) ,  

and the Lorentz condition (6.7) again can be given the form (8.9). The fundamental 
solutions + * ( z 0 , p ;  53) are calculated to be 

C ( z o , p ;  *l)=N(p,p)+(p, *ll)wMo.b(-2iw) 
(8.27) 

with the basis functions I&, f 1) being defined by 

(8.28) 
1 

**@, * 1 ) = J Z ( K p * , ~ i K p ~ 2 )  

and &, = +(dip). Furthermore, the positive frequency fundamental solutions are 

++(LO, p ;  s3)= &-(rO, p ;  -s3)*. (8.29) 

These solutions are normalised with respect to the scalar product 

( ~ L I , J I ~ ) =  -i j ~ * ( r > ( 4 l t ( z > ~ ~ , ( z ) ~ / : o ”  - + ~ ( z ~ ~ ~ ~ ( z ) r ~ ~ ( z ) ~ ) .  (8.30) 

Again, the contraction yields the vector field of flat space in the helicity basis, with the 
limit being taken according to (8.24). There remains the determination of the equal- 
time commutator, which yields 

(5.31) 

with all other commutators vanishing. This proves the locality property of the vector 
field. 

9. Commutator function 

We now want to calculate the explicit invariant form of the commutator function. For 
later purposes we do this for arbitrary dimension d of de Sitter space-time. 

To begin with, we determine the solutions of the equation 

[ZOZoaCLa, - ( d  -2)~Oao]+(z)= A(A+d - l ) + ( ~ )  (9.1) 
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with p = 0,1 ,  . . . , d - 1 and A = -;(d - l )+ip.  They read 

+ e-iprN( p ,  p )( p z  'I>' (d- ' 

N(p, p )  = +J(r) e-Wp"(p)-f(d-'), 

p z  ')>c - ( p  >I (9.2) 

where for convenience we have chosen Hankel functions. The modified normalisation 
constant is 

(9.3) 

with the phase factor being omitted. By making use of the commutation relations 

[a'(p), c*(p ' ) ]  = (2r)d-1s(p -p ' ) ,  (9.4) 

the commutator functions 

(9.7) x IN( p ,  p)l2(  pZ:)t(d-l)fP( 0 I(d-1) ( 1 )  
ip P ? ) ( P Z ~ )  H i p  ( P Z : ) * ,  

and where z12 = z1 - z 2 .  To make the integral absolutely convergent we analytically 
continue z into the backward tube, 

z +(zo+ie, z), (9.8) 
which is a reasonable procedure due to the fact that the conformal group acts as a 
transitive transformation group on this domain (Ruhl 1972, 1973a,b, Grensing 1976). 
If in addition the Hankel functions are replaced by modified Bessel functions, we find 

A - ( ~ ~ ,  z 2 ) =  in-1/2121-f(d-3) 
0 0 h(d-1) 

( 2 1 2 2 )  

(2T)-h(d-1) JOm dp pf(d-l)Kip(-ip(z? + i.)) 

Kip (+ip(z:- ie))Jf (d-3)(P IZl21). 

This integral is evaluated by means of (Magnus et ai 1966, p 103) 

lom dx x "+'K,(ax)K, (bx)J,(cx) 

(9.9) 
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where the geodesic distance 

(9.1 1) 

(9.12) 

of the points z1 and z2 has been introduced (cf Gel’fand et a1 1966) and pI2(e)= 
p(zy+ic, r l ;  z:-ie, z2 ) .  This result can be further simplified with the aid of the 
following relation between the Legendre function and the hypergeometric function 
(Magnus et a1 1966, p 52) 
zFl(a,  b ;  $(U + b + 1); z )  = T(i(a + b + l))[z(z - l)]i(l-‘-b) P i ( a - b - l ) ( l  -22) (9.13) 

larg z I < r7 /arg(z - 111 <IT, ZkZfIO, 13. 

Then (9.1 1) takes the closed form 

~ ~ ~ ~ ( i ( d - 1 ) + i p , i ( d - 1 ) - i p ; i d ; i ( 1 + p ~ 2 ( ~ ) ) .  (9.14) 

The hypergeometric function has a cut from 1 c z < 03 so that the €-prescription must 
be taken into account for time-like or light-like separated points only. Furthermore, 
because of 

(9.15) 

the distribution (9.14) turns out to be explicitly invariant (cf P 4). 

A+(zl, z 2 )  +A-(zl, z2) for physical space-time dimension d = 4 is determined to be 
Finally, starting from (9.11)’ the commutator function A(zl, z 2 )  = 

with 

i-  

(9.16) 

(9.17) 

which agrees up to factor r-’ with the result obtained in Tagirov (1973). 

10. Irreducibility of the field representations and some comments on mass zero 
particles 

Our discussion of free fields in de Sitter space is not yet complete because it remains to 
prove that the fields transform irreducibly. A rigorous proof would require a detailed 
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analysis of time inversion invariance. However, this is a difficult problem which has not 
been solved so far. To circumvent it, we will henceforth assume that the solutions of the 
field equations have definite parity with respect to time inversion, without specifying 
their explicit form. These solutions constitute an invariant sub-space, which we expect 
to transform irreducibly under elements of the identity component of the de Sitter 
group. The following arguments show that this suggestion is reasonable (Streitz 1976). 

For simplicity we only discuss the scalar case. To begin with, we introduce functions 
f(5) defined on 5' < 0. Obviously, the quasi-regular representation 

(10.1) 

with R E SOo( 1,4)  is not irreducible. To achieve this, we require f to be an harmonic, 
homogeneous function of degree A = -$+ip, 

(10.2) 

(10.3) 

where U(() = (a /a (" ) (a /a&)  and a > 0. Furthermore if f is assumed to be an even or 
odd function, the sub-space so defined will be irreducible. This property can be proved 
rigorously by means of the Gel'fand-Graev transformation (Gel'fand et a1 1966) for 
functions f which are defined instead on t2 > 0, to > 0 and obey (10.2)-( 10.3) (Vilenkin 
1968). However, for (* < 0 this transformation is known for d = 3 only, so that a proof 
of our assertion is not available. Taking for granted this property, we now show how the 
Klein-Gordon equation appears in this context. To this end we make use of (10.3) and 
define 

+ ( z )  = r-"fct) ,  (1 0.4) 

with 5 and z being related according to (2.18) and r = d( -5'). In terms of the variables 
z and r the operator U(() reads 

1 a 4 a  
U(() =? -r -+O(z), 

r ar ar (10.5) 

and we obtain 

O(() f ( ( )  = 0 = rA- ' [ r20(z )  - A(A +3) ]+( z ) .  (10.6) 

Thus, the homogeneity property can be used to restrict the functions f on t ' < O  to 
5' = - r2,  which together with the requirement that f is harmonic yields the Klein- 
Gordon equation. 

We add some remarks on mass zero particles in de Sitter space. At first we need 
information about the irreducible sub-representations occurring in the reduction of the 
quasi-regular representation (10.1) on functions over (' = - r* .  A thorough investiga- 
tion, which we omit for the sake of brevity, shows that two types of representations 
appear. The first is contained in the continuous principal series and carries the index 
(0; t ( d  - 1)+ ip) with p # 0. They have been associated above with scalar particles of 
non-zero mass for d = 4. The second type is contained in the exceptional series with 
index ( I ;  -l) ,  where 1 is a multi-index. Only for d = 2 do these representations belong 
to the discrete series, and for d = 3 to the principal series with p = 0. We expect the 
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representations to be associated with particles of mass zero. To confirm this supposi- 
tion, we note that for A = -1 and spin 1 = 0 the field (cf Borner and Durr 1969) 

has canonical dimension S = 1, 

~ ( d ) 4 ( z ) =  (eA)-’4(eWAz). 

Furthermore, it obeys the equation 

a,a“+(Z) = o 

(10.8) 

(10.9) 

so that the de Sitter group may be enlarged to the conformal group. A more sensitive 
test is obtained for 1 = 1, where for the massless case some kind of gauge invariance 
should occur. We thus determine those values of A for which the field equations are 
invariant under the substitution 

$” ( z )  + $’, (2) = $’(z) + V” (z)A(z). (10.10) 

Since $’” must be a solution of the Klein-Gordon equation together with $”, the 
arbitrary function A must obey the condition 

T(CIJVP(~)A(z) =[2+A(A+3)]VC”(z)A(z) = V’(z)O(~)h(z), (10.11) 

and the invariance of the Lorentz condition requires 

Ci(r)A(z) = 0, (10.12) 

which yields A = - 1. We have not investigated in detail the solutions of the field 
equations for mass zero. However, in the scalar case they are easily obtained and can be 
shown to contract into the conformal invariant solutions of the flat case. Furthermore, 
the field turns out to be local (cf also Tagirov 1973), in contrast to a result given in 
Borner and Durr (1969). 

11. The renormalisation problem for the model of a scalar particle in the de Sitter 
background field 

In the preceding sections we have given a rather detailed investigation of free field 
theory in de Sitter space. We now want to treat the simplest case of an interaction 
problem, that of a scalar quantum field interacting with its classical background 
geometry. The metric tensor g,,(z) thus plays the role of an external field. If only the 
first quantum correction is taken into account, the theory is fully determined by the 
effective Lagrangian 2’g) of the matter field. Then the total Lagrangian 2’ = 2&+2’k), 
with 2 ’ ~  the gravitational Lagrangian, generates the irreducible vertex functions 
with only one closed loop. It is a known fact that 2’c) is related to the Feynman 
propagator AF(z1,z2) of the matter field in the presence of the background by the 
equation (for a derivation see, e.g. Brown and Duff 1975): 

(11.1) 

The Feynman propagator is easily obtained from the results of P 8 and will be given 
below. Hence the effective Langrangian is known explicitly. 
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Does this theory obey the requirement of being renormalisable? This question has 
been answered in the affirmative by Candelas and Raine (1975), and Dowker and 
Critchley (1 976) by applying the dimensional regularisation technique directly in 
coordinate space. We present a corrected proof of renormalisability, which rigorously 
takes into account the pole proportional to the square of the curvature. Moreover, a 
slight modification results from our definition m = p / r  of the mass. 

First of all, by means of equation (9.14) the Feynman propagator 

(11.2) 

is determined to be 

which agrees up to a minus sign with the result obtained by Candelas and Raine (1975) 
and Dowker and Critchley (1976) by means of the Schwinger-De Witt proper-time 
technique (De Witt 1964, 1975). In particular, we have shown that the Fulling 
phenomenon (Fulling 1973) does not occur (cf, however, Candelas and Raine 1975). 
Note that the commutator functions A* have been multiplied by a factor r-d+2 to assign 
to AF the correct dimension. 

We define d = 2w and analytically continue to complex values of w .  The coinci- 
dence limit of (11.3) exists for R e o  < 1 and reads 

(11.4) 
-4+imr)r(w - i - imr) 
r($ + imr)r(t  - imr) 

AF(z ,z )=  -ir2(4.rrr2)-"I'(l-wj 

This is an analytic function of w except for simple poles with the following Laurent 
series about w = 2, 

-1n 4nr2 + c - 13 + O(W - 21, (11.5) 

where now $ ( z ) = r ' ( z ) / r ( z )  and C is Euler's constant. The Laurent series of the 
effective Lagrangian is then found to be 

.( (4m4r2 +$m2) (u  - 2)-'  + dm2(m ' r 2  +$)(e($+ imr) + e($- imr)) I 1 
3 2 ~  r 

c&) = ~ 

(11.6) 

which displays the form of the singularity at w = 2. The effective Lagrangian thus has 
poles proportional to ro and r - 2 .  However, as is known from standard theory (De Witt 
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1964,1975)' there should exist a further pole proportional to r-4. It has been lost by the 
illegitimate interchange of the integration and expansion process. 

The existence of the r-4 pole can be demonstrated as follows. We asymptotically 
expand the effective Lagrangian about r = 00, which essentially amounts to a perturba- 
tion expansion in powers of the curvature. This we achieve by means of (Magnus et a1 
1966, p 13) 

r(a + ix)r(a  - ix)/r@ + ix)r@ - ix) - (X 2)p - -8  (ao + a 1 ~ - 2  + u ~ x - ~  + o(x-7) 

with a. = 1, a l  = f ( B 3 ( a )  -B3(P)) ,  a2 = &(B3(a) -B3(P))2-h(B5(a)  -B5(P)) and 
B, ( z )  the Bernoulli polynomials. Hence we find for the propagator 

with 

(11.7) 

(11.8) 

which shows that the &,(U) are regular for k Z=2. Consequently, the asymptotic 
expansion of the effective Lagrangian, 

(11.9) 

in fact has poles proportional to Yo, r-', r-4. The Laurent series for the coefficients of 
the expansion are 

We take into account the r-4 pole by making use of the freedom in the choice of an 
integration constant, 

M ( z )  = f i  dm2AF(z, 2) + r - 4 C ( ~ )  (1 1 . 1  1) I C p '  

where C(o) is independent of m. It is tempting to choose the integration constant to be 
equal to the term k = 2 of (11.9)' as has been done by Dowker and Critchley (1976). 
However, the Laurent series of L&) contains terms proportional to r-4. We extract 



Quantised fields over de Sitter space 1713 

them by asymptotically expanding (11.6). Using (Norlund 1924, p 101) 

&+imr)+ $($-imr)- ln(mr)2+%(mr)-2 -%(mr)-'+~(r-~), 

we obtain 

(11.12) 

which proves the assertion. We can determine the integration constant by comparing 
(11.12) with the Laurent series of (11.9), 

(1 1.13) 

so that C ( w )  must be equal to 

(1 1.14) 

The infinities of the effective Lagrangian can be absorbed by a re-definition of the 
gravitational Lagrangian 

LfG = (16lrG)-'R - 2A + (aR2 +PR,,,RR" + ~RpvprRw"p7), (11.15) 

where G is the gravitational and A the cosmological constant. The last term on the 
right-hand side of (11.15) has been added according to the general renormalisation 
procedure (De Witt 1964, 1975, Isham et a1 1975). We define renormalised constants 
by 

20(20 - 1 ) ( 1 6 ~ G ~ ) - '  

= - 2 w ( 2 ~  - 

4w2(2w - 1)z( a , + ~ & +  1 
1 

(11.16) 

1 
= 402(2w - 1)2( a 



1714 G Grensing 

and after all obtain a finite total Lagrangian at w = 2, 

(11.17) 

Thus, the quantum theory of a scalar field in the de Sitter background proves to be 
renormalisable. However, this result should not be taken too seriously in view of the 
recent research on the renormalisation problem of quantum gravity (Isham et a1 1975) 
by means of the methods of non-Abelian gauge theories. 

Appendix 1. Representations of the continuous principal series 

We give a brief account of those representations of G which originate from the Bruhat 
decomposition (2.11). 

In actual computations it is convenient to use instead of G an isomorphic group 6 
defined by 

1 1 i l  
i ? = 4 + # J 9  4=z(il 1) 

so that the nilpotent factors 

N--  ={g(a)}creBP3 N' = {g(CjICER3 

take an explicit nilpotent form. Then the derivation of the representations ,y = 
(/;-$+ip) of the continuous principal series proceeds along well known lines (see 
Streitz 1976); a similar investigation for the spin covering of the Euclidean conformal 
group SOO( 1,5)  is carried out in Grensing (1975b). They are induced by the unitary and 
irreducible representations of the subgroup G' with elements g' = g(A)g(d)g(c), which 
are trivial on N', and read 

U"(a)f(x) =f(x - a )  

VX(A)f(X) = D"'(A)f(K-'x) 

U' (ci)f(x> = (eA >-""Pf(e-Ax> 

V"(c ) f (x )=  (1 +2x.  c+x2c2)-~+i"D'"(A(X, c))f(x+x2c/1 +2x .  c+x2c2)  

(A.2) 

with 

(A.3) 
A ( X , C ) = l + i v / ( l + 2 x . c + x  2 (1 2 ) 1/2 , 

These representations are unitary with respect to the scalar product 

64.4) 
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The computation of the infinitesimal operators 

- a  
aa 

Pi = i y g ( a ) / , = o ,  

a a 
a A  ac D = -i-g(d)lA,o, Ei = iyg(c) l ,=o,  

1715 

( ' 4 . 5 )  

which may be used to calculate the eigenvalues (2.28) of Ux(CIl) and U' (CW). For the 
convenience of the reader we also quote the second Casimir operator in case of the field 
representation, 

T(Crv) = i x i k  xji xkj + 2 x i k  xik 
+ 2ixik xii xkPz, a, + ixik xik c ~ ~ z ,  a, + 4 x i k  xiiz a, 
+ 2xik gkz 'a, - 2xik xkpz, a' - xik xikz a, - 2iYkzP ak 
-2xikxi~z,zkd'aj  +2z ikxi r~ ,~ 'a iak  + 2 ~ ~ k x % , z ~ a ' a ~  

-zPkzkUZPZ,,aiai -xk,ziuZwZ,,aiak +21 ;~~~ '~z , z"a , , a~  

+~xikxikzwzYa,ay -2x'ikz z z a,ai -xikc z z aPai 
+ x i k  x j i z , ~  CL ak a, + ;xik xikz,zP aid - ixkPZkZ, d a, 
+ixkPz,ziaiak - 2 i ~ ~ ~ ~ , ~ ~ a ~ a ~ ,  

ji k ~1 ik ~1 j 

which is needed in 0 6. 

(A.lO) 

Appendix 2. Discrete transformations 

The full de Sitter group has four connected components. As representatives of the 
decomposition of SO( 1,4) with respect to the identity component SOo( 1,4), 

(A. 11) S 0 ( 1 , 4 ) =  1 SO&, 4)RJ J =  I, P, T, PT, 
J 
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we choose RI = I ,  

/[ -' -1 - 1  ) ,  XT=[ -' -1 -1 -1, (A.12) 

and RPT= RPRT. They act on z in the canonical way, 

-1 

Rj .  z = AJZ. (A.13) 

In addition we introduce for later purposes 

Ri=(AJ  1) ,  (A. 14) 

which are related to the Rj by 
R f = R I ,  Rb=Rp, Rk= R T R ~ ,  R&=RmRw. (A.15) 

Furthermore, we shall need the explicit form of the inner automorphisms 

pj(R) = RjR R;' (A. 16) 

of SOO( 1.4), 

P I  ( R )  = R = PT(R 1 

pp(R)= -Rko Rki -Rk5 = P P T W  ). (A.17) 

A covering group S%( 1,4) of SO( 1,4) again has four components, the connected 

1 1:; ::I; 5 k , i= i ,2 ,3  

component of the identity being equal to G, 

=(1,4)=CGgr. (A.18) 
3 

In view of the identity 

g gJg'gJ' = gbJ(g')gJgJ' (A. 19) 

and due tobJ(g) = g.,gg;' E G the multiplication law of m ( 1 , 4 )  is completely specified, 
if the inner automorphisms bJ of G and the products gJgJ are known. In order to 
determine the bj we note that y', which is not contained in G, maps 6 into 

S'= (y5)E(y5)-1 ,  5"= R X .  

By defining 8 = y 5 E ,  it is easily checked that 8 - ' g 8  E G and G(gg8-l) = pPT(R), where 
3- denotes the covering homomorphism of G = %0(1,4) onto SOo(l, 4) (cf (2.10)). 
Hence we have bpT(g)  = 8g'Z-l so that the inner automorphisms are obtained to be 

61 ( g )  = g = b T ( g )  

(A.20) 
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Furthermore, as in the case of the covering groups of the full Lorentz group (see 
Grensing 1975a), the multiplication law of the discrete elements reads 

gP gT gm I g1 

I 

gPT I gFT ETfPTgT ETgP EPTgI 

On account of 

gJgY = EgYgJ, J f J ’ ;  J ,  J ’ Z I  (A.22) 

with E = epeTepT the discrete elements commute or anti-commute. That is, there exist 
eight non-isomorphic covering groups of the full de Sitter group. 

We apply these results to the field representations (3.1), which we want to extend by 
the discrete transformations. A simple calculation shows 

;I (gz ) = gz = p’dgz 1 
P ’ P k )  = sgdz  O)gh* = p’PT(g*) 

so that 

(A.23) 

(A.24) 

g h =  gngm (A.25) 

in analogy to (A.15). These discrete elements determine the inner automorphisms 
p’;(g) = g;gg;-’ with 

(A.26) 

and their multiplication law is specified by 

Et.  = +EP, E;= +ET, E h . =  -€PT. (A.27) 

In contradistinction to the discrete elements gJ, the g; have the properties 

g;. f = f  (A.28) 

and 

(A.29) 

Hence the fixed g r z p  of 2 contains elements ig;, and the g_(tyield the same inner 
automorphisms of S00(1,3) as the corresponding elements of S0(1,3).  We have now 
reduced the task to a known problem, because we can make use of the representations 

a t - 1  - - 1  P”(6) = 6 = p’&T(i), p’b(6) = g  - P T ( i ) .  
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of the spin coverings of the full Lorentz group. The representations with dimension less 
than or equal to four read (Grensing 1975a) 
s =o:  D ( i )  = 1; D (gf.)= ZP, D(gk) =E*T (A.30) 

1 D(gk) = i&y0y5 (A.3 1) 
s = 2: W ) = 6 ;  D(g9 = Y o j  

s = 1: D(6)  = A ;  D(g9  = € P A P ,  D (gk) = ZTAT (A.32) 

with Zp, Z T =  $1, and where for s = 1 we have restricted ourselves to the case 
( E ; ,  E ; ,  e h )  = (1, -1, 1). In addition to (3.1) we thus define 

T(gf)+(z) =D(g,'gfg,;-1 z)+(s;-' . z ) .  (A.33) 

Going over from the g; to the gJ, we find 

T(gp)+(z) = D (sgn(z O)gf.)$(&lz) (A.34) 

T(gT)I(I(Z) = D (gk)$(AG1z) 
and T(gpT)= T(gp)T(gT) such that for the representations (A.30)-(A.32) the discrete 
transformations take the form 

s = 0: T(gp)+(z) = Elp+(AP1z), T(gT)+(z) = &+(AT~z)  (A.35) 

s = i: T(gp)+(z) = sgn(zO)yO+(AG1z), T(gT)$(z) = iiT7°$+(~4&) (A.36) 

s = 1: T(gp)+(z) = <pAp+(Ai lz ) ,  T(gT)$(z) = ZTAd(A&) ,  (A.37) 

which is the final result. Note that for s = $  the discrete elements (A.36) commute, 
though we have induced them with an anti-commuting representation. 
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